Binomial Distribution#

Binomial Random Variable#

Definition#

Recall a Bernoulli Random Variable is defined over a sample space of binary outcomes, a success s that occurs with probability p of success and a failure f that occurs with probability 1-p,

Y = \begin{array}{ c l }
    1                 & \quad \textrm{with probability} p \\
    0                 & \quad \textrm{with probability } 1 - p
\end{array}

Consider a random variable defined as the sum of n Bernoulli random variables, Y_i

X = Y_1 + Y_2 + ... + Y_{n-1} + Y_n

Where each Y_i takes the value 1 with probability p or it takes the value 0 with probabilitiy 1 - p

TODO

From Conditional Probability, the probability of an intersection of independent events is the product of individual probabilitiy,

P(A \cap B) = P(A) \cdot P(B)

TODO

Conditions#

In order for an experiment to be Binomial, the experiment must the conditions just discussed. The summary below provides a list of each condition.

Parameters#

The Binomial Distribution has two parameters.

TODO

(Source code, png, hires.png, pdf)

../../_images/binomial_distribution_01.png

(Source code, png, hires.png, pdf)

../../_images/binomial_distribution_02.png

(Source code, png, hires.png, pdf)

../../_images/binomial_distribution_03.png

(Source code, png, hires.png, pdf)

../../_images/binomial_distribution_04.png

Probabilitiy Distribution#

TODO

Probability Density Function#

TODO

p(x; n, p) = C^{n}_x \cdot p^{x} \cdot (1 - p)^{n-x}

Cumulative Distribution Function#

TODO

By definition,

F(x; n, p) = \sum^{x}_{i=0} C^{n}_i \cdot p^{i} \cdot (1 - p)^{n-i}

Expectation#

TODO

derive through rules of independent random variable sums

TODO

Standard Deviation#

TODO

TODO

TODO

derive through rules of independent random variable sums